

400Gb/s QSFP-DD ER4 Lite 30km Transceiver HXEX-ML331x

Features

- Compliant with 100GBASE-LR4
- QSFP-DD MSA compliant
- 4 LWDM lanes MUX/DEMUX design
- Up to 30km transmission on single mode fiber (SMF) with FEC
- Operating case temperature: 0 to 70oC
- 8x53.125Gb/s electrical interface (400GAUI-8)
- Data Rate 106.25Gbps (PAM4) per channel.
- Maximum power consumption 12W
- Duplex LC connector
- RoHS compliant

Applications

- Data Center
- 400G Ethernet
- Infiniband interconnects
- Enterprise networking

Part Number Ordering Information

Part Number	Data Rate	Wavelength	Transmission	Temperature (°C)
	(Gb/s)	(nm)	Distance(km)	(Operating Case)
HXEX-ML331C	400	1295.56, 1300.05 1304.58, 1309.14	30	0~70 Commercial

I. Absolute Maximum Ratings

It has to be noted that the operation in excess of any individual absolute maximum ratings might cause permanent damage to this module.

Parameter	Symbol	Min	Max	Unit	Notes
Storage Temperature	Ts	-40	85	°C	
Power Supply Voltage	V_{CC}	-0.5	3.6	V	
Relative Humidity (non-condensation)	RH	0	85	%	
Damage Threshold	TH_{d}	-5		dBm	

II. Recommended Operating Conditions

Parameter	Symbol	Min	Typical	Max	Unit	Notes
Operating Case Temperature	T _{OP}	0		70	°C	Commercial
Power Supply Voltage	V _{CC}	3.135	3.3	3.465	V	
Data Rate, each Lane			26.5625		GBd	
Pre-FEC Bit Error Ratio				2.4x10 ⁻⁴		
Post-FEC Bit Error Ratio				1x10 ⁻¹²		
Link Distance (SMF)	D	0.002		30	km	9/125um

III. General Description

Walsun'100G QSFP-DD ER4 lite optical Transceiver is a 400Gb/s Quad Small Form Factor Pluggable-double density (QSFP-DD) optical module designed for optical communication applications. The module converts 8 channels of 50Gb/s (PAM4) electrical input data to 4 channels of LAN-WDM optical signals, and multiplexes them into a single channel for 400Gb/s optical transmission. Reversely, on the receiver side, the module optically de-multiplexes a 400Gb/s optical input into 4 channels of WDM optical signals, and converts them to 8 channels of 50Gb/s (PAM4) electrical output data.

The central wavelengths of the 4 LAN WDM channels are 1295.56, 1300.05, 1304.58 and 1309.14 nm as members of the LAN WDM wavelength grid defined in IEEE802.3ba. It contains a duplex LC connector for the optical interface and a 76-pin connector for the electrical interface. To minimize the optical dispersion in the long-haul system, single-mode fiber (SMF) has to be applied in this module. It can support up to 30km with 400G KP4 FEC. The product is designed with form factor, optical/electrical connection and digital diagnostic interface according to the QSFP-DD Multi-Source Agreement (MSA). It has been designed to meet the harshest external operating conditions including temperature, humidity and EMI interference.

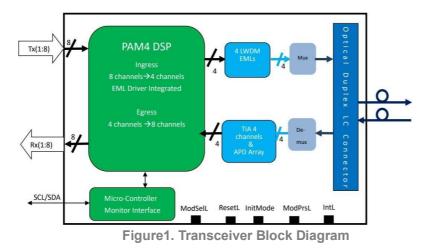
The module incorporates 4 independent channels on LWDM4 1295.56, 1300.05, 1304.58 and 1309.14nm center wavelength, operating at 100G per channel. The transmitter path incorporates a quad channel EML driver integrated in the DSP and EML lasers together with an optical multiplexer. On the receiver path, an optical de-multiplexer is coupled to a 4 channel APD array. A DSP basis gearbox is used to convert 8 channels of 25GBaud PAM4 signals into 4 channels of 50GBaud PAM4 signals and also an 8-channel retimer. The electrical interface is compliant with IEEE 802.3bs and QSFP-DD MSA in the transmitting and receiving directions, and the optical interface is compliant to IEEE 802.3bs with duplex LC connector.

A single +3.3V power supply is required to power up this product. All the power supply pins are internally connected and should be applied concurrently. As per MSA specifications the module offers seven low speed hardware control pins (including the 2-wire serial interface): ModSelL, SCL, SDA, ResetL, InitMode, ModPrsL and IntL.

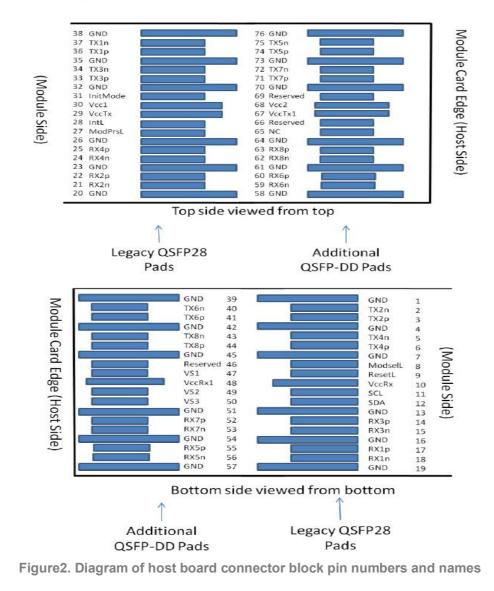
Module Select (ModSelL) is an input pin. When held low by the host, this product responds to 2-wire serial communication commands. The ModSelL allows the use of this product on a single 2-wire interface bus – individual ModSelL lines must be used.

Serial Clock (SCL) and Serial Data (SDA) are required for the 2-wire serial bus communication interface and enable the host to access the memory map.

The ResetL pin enables a complete reset, returning the settings to their default state, when a low level on the ResetL pin is held for longer than the minimum pulse length. During the execution of a reset the host shall disregard all status bits until it indicates a completion of the reset interrupt. The product indicates this by posting an IntL (Interrupt) signal with the Data_Not_Ready bit negated in the memory map. Note that on power up (including hot insertion) the module should post this completion of reset interrupt without requiring a reset.


Initialize Mode (InitMode) is an input signal. It is pulled up to Vcc in the QSFP-DD module. The InitMode signal allows the host to define whether the QSFP-DD module will initialize under host software control (InitMode asserted High) or module hardware control (InitMode deasserted Low). Under host software control, the module shall remain in Low Power Mode until software enables the transition to High Power Mode, as defined in the QSFP-DD Management Interface Specification. Under hardware control (InitMode de-asserted Low), the module may immediately transition to High Power Mode after the management interface is initialized. The host shall not change the state of this signal while the module is present. In legacy QSFP applications, this signal is named LPMode. See SFF-8679 for LPMode signal description.

Module Present (ModPrsL) is a signal local to the host board which, in the absence of a product, is normally pulled up to the host Vcc. When the product is inserted into the connector, it completes the path to ground through a resistor on the host board and asserts the signal. ModPrsL then indicates its present by setting ModPrsL to a "Low" state.


Interrupt (IntL) is an output pin. "Low" indicates a possible operational fault or a status critical to the host system. The host identifies the source of the interrupt using the 2-wire serial interface.

The IntL pin is an open collector output and must be pulled to the Host Vcc voltage on the Host board.

IV. Pin Assignment and Pin Description

			W/		
Pin #	Logic	Symbol	Description	Plug Sequence	Notes
1		GND	Ground	1B	1
2	CML-I	Tx2n	Transmitter Inverted Data Input	3B	
3	CML-I	Tx2p	Transmitter Non-Inverted Data Input	3B	
4		GND	Ground	1B	1
5	CML-I	Tx4n	Transmitter Inverted Data Input	3B	
6	CML-I	Tx4p	Transmitter Non-Inverted Data Input	3B	
7		GND	Ground	1B	1
8	LVTTL-I	ModSelL	Module Select	3B	
9	LVTTL-I	ResetL	Module Reset	3B	
10		VccRx	+3.3V Power Supply Receiver	2B	2
11	LVCMOS- I/O	SCL	2-wire serial interface clock	3B	
12	LVCMOS- I/O	SDA	2-wire serial interface data	3B	
13		GND	Ground	1B	1
14	CML-O	Rx3p	Receiver Non-Inverted Data Output	3B	
15	CML-O	Rx3n	Receiver Inverted Data Output	3B	
16	GND	Ground	1B		1
17	CML-O	Rx1p	Receiver Non-Inverted Data Output	3B	
18	CML-O	Rx1n	Receiver Inverted Data Output	3B	
19		GND	Ground	1B	1
20		GND	Ground	1B	1
21	CML-O	Rx2n	Receiver Inverted Data Output	3B	
22	CML-O	Rx2p	Receiver Non-Inverted Data Output	3B	
23		GND	Ground	1B	1
24	CML-O	Rx4n	Receiver Inverted Data Output	3B	
25	CML-O	Rx4p	Receiver Non-Inverted Data Output	3B	
26		GND	Ground	1B	1
27	LVTTL-O	ModPrsL	Module Present	3B	
28	LVTTL-O	IntL	Interrupt	3B	
29		VccTx	+3.3V Power supply transmitter	2B	2
30		Vcc1	+3.3V Power supply	2B	2
31	LVTTL-I	InitMode	Initialization mode; In legacy QSFP applications, the InitMode pad is called LPMODE	3B	
32		GND	Ground	1B	1
33	CML-I	Tx3p	Transmitter Non-Inverted Data Input	3B	
34	CML-I	Tx3n	Transmitter Inverted Data Input	3B	
35		GND	Ground	1B	1

Walsun Technology Co., Ltd

www.walsun.com HX

HXEX-ML331x V1.0

			\mathbf{W}		
36	CML-I	Tx1p	Transmitter Non-Inverted Data Input	3B	
37	CML-I	Tx1n	Transmitter Inverted Data	3B	
			Input		
38		GND	Ground	1B	1
39		GND	Ground	1A	1
40	CML-I	Tx6n	Transmitter Inverted Data Input	3A	
41	CML-I	Тх6р	Transmitter Non-Inverted Data Input	3A	
42		GND	Ground	1A	1
43	CML-I	Tx8n	Transmitter Inverted Data Input	3A	
44	CML-I	Tx8p	Transmitter Non-Inverted Data Input	3A	
45		GND	Ground	1A	1
46		Reserved	For future use	3A	3
47		VS1	Module Vendor Specific 1	3A	3
48		VccRx1	3.3V Power Supply	2A	2
49		VS2	Module Vendor Specific 2	3A	3
50		VS3	Module Vendor Specific 3	3A	3
51		GND	Ground	1A	1
52	CML-O	Rx7p	Receiver Non-Inverted Data Output	3A	
53	CML-O	Rx7n	Receiver Inverted Data Output	3A	
54		GND	Ground	1A	1
55	CML-O	Rx5p	Receiver Non-Inverted Data Output	3A	
56	CML-O	Rx5n	Receiver Inverted Data Output	3A	
57		GND	Ground	1A	1
58		GND	Ground	1A	1
59	CML-O	Rx6n	Receiver Inverted Data Output	3A	
60	CML-O	Rx6p	Receiver Non-Inverted Data Output	3A	
61		GND	Ground	1A	1
62	CML-O	Rx8n	Receiver Inverted Data Output	3A	
63	CML-O	Rx8p	Receiver Non-Inverted Data Output	3A	
64		GND	Ground	1A	1
65		NC	No Connect	3A	3
66		Reserved	For future use	3A	3
67		VccTx1	3.3V Power Supply	2A	2
68		Vcc2	3.3V Power Supply	2/1 2A	2
69		Reserved	For Future Use	3A	3
70		GND	Ground	1A	1
70	CML-I	Tx7p	Transmitter Non-Inverted Data Input	3A	1
72	CML-I	Tx7n	Transmitter Inverted Data Input	3A	
73		GND	Ground	1A	1

Walsun Technology Co., Ltd

www.walsun.com

HXEX-ML331x V1.0

74	CML-I	Tx5p	Transmitter Non-Inverted Data Input	3A	
75	CML-I	Tx5n	Transmitter Inverted Data Input	3A	
76		GND	Ground	1A	1

Notes:

1. With the exception to IEEE 802.3bs 120E.3.1.2 that the pattern is PRBS31Q or scrambled idle.

2. Meets BER specified in IEEE 802.3bs 120E.1.1.

3. DC common mode voltage generated by the host. Specification includes effects of ground offset voltage.

V. Recommended Power Supply Filter

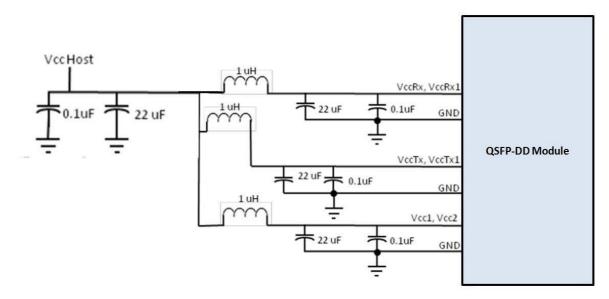


Figure3. Recommended Power Supply Filter

VI. Electrical Characteristics

The following electrical characteristics are defined over the Recommended Operating Environment unless otherwise specified.

Parameter	Symbol	Min.	Тур.	Max	Unit	Notes
Power Consumption	р			12	W	
Supply Current	Icc			3.64	А	
	Transm	itter (each	lane)	-	-	
Signaling Rate, each Lane	TP1	26.5625 ± 100 ppm GBd				

			W			
Differential Data Input Amplitude	Vin, PP	900			mVpp	1
		IEEE 802.3-				
Differential Input Return Loss	TP1	2015			dB	
		Equation				
		(83E-5) IEEE				
		802.3-				
Differential to Common Mode Input Return Loss	TP1	2015			dB	
Input Return 2055		Equation			uD	
		(83E-6)				
Module Stressed Input Test	TP1a	See IEEE	802.3bs 1	20E.3.4.1		2
Single-ended Voltage Tolerance Range (Min)	TP1a		-0.4 to 3.3		V	
DC Common Mode Input Voltage	TP1	-350		2850	mV	3
	Recei	ver (each la	ne)			
Signaling Rate, each lane	TP4		625 ± 100	ppm	GBd	
Differential Peak-to-Peak Output Voltage	TP4			900	mVpp	
AC Common Mode Output Voltage, RMS	TP4			17.5	mV	
Differential Termination Mismatch	TP4			10	%	
Differential Output Return		IEEE				
Loss	TP4	802.3-				
		2015				
		Equation (82E 2)				
Common to Differential Mode		(83E-2) IEEE				
Conversion Return Loss	TP4	802.3-				
	114	2015				
		Equation				
		(83E-3)				

Transition Time, 20% to 80%	TP4	9.5			ps	
Near-end Eye Symmetry	TP4		0.265		UI	
Mask Width (ESMW)						
Near-end Eye Height,	TP4	70			mV	
Differential						
Far-end Eye Symmetry Mask	TP4		0.2		UI	
Width (ESMW)						
Far-end Eye Height,	TP4	30			mV	
Differential						
Far-end Pre-cursor ISI Ratio	TP4	-4.5		2.5	%	
Common Mode Output	TP4	-350		2850	mV	3
Voltage (Vcm)						

Notes:

- 1. With the exception to IEEE 802.3bs 120E.3.1.2 that the pattern is PRBS31Q or scrambled idle.
- 2. Meets BER specified in IEEE 802.3bs 120E.1.1.
- 3. DC common mode voltage generated by the host. Specification includes effects of ground offset voltage.

VII. Optical Characteristics

The following optical characteristics are defined over the Recommended Operating Environment unless otherwise specified.

Parameter	Symbol	ol Min. Typical		Max	Unit	Notes
	L0	1294.53	1295.56	1296.59	nm	
	L1	1299.02	1300.05	1301.09	nm	
Lane wavelength (range)	L2	1303.54	1304.58	1305.63	nm	
	L3	1308.09	1309.14	1310.09	nm	
Signaling rate, each lane		53	$3.125 \pm 100 \text{ pr}$	om	GBd	
Side-mode suppression ratio	SMSR	30				
Total launch power				14.7	dBm	
Average launch power, each lane	Pavg	0.4		6.5	dBm	

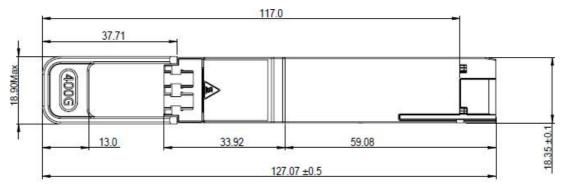
www.walsun.com

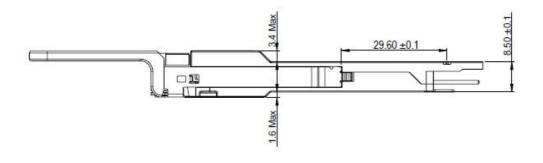
			W			
Outer Optical Modulation	POMA	3.4		9	dBm	
Amplitude (OMAouter),						
each Lane						
Launch Power in		2			dB	
OMAouter minus TDECQ,						
each Lane						
Transmitter and Dispersion	TDECQ			3.9	dB	
Eye Closure for PAM4,						
each Lane						
Extinction Ratio	ER	6			dB	
Difference in Launch				4	dB	
Power between any Two						
Lanes (OMAouter)						
RIN _{15.1} OMA	RIN	-132			dB/Hz	
Optical Return Loss	TOL			15.6	dB	
Tolerance						
Transmitter Reflectance	RT			-26	dB	
Average Launch Power of	Poff			-30	dBm	
OFF Transmitter, each Lane						
		Receiver				
Data Rate, each Lane		53	8.125 ±100 pp	m	GBd	
Modulation Format			PAM4			
Damage receiver power,		-2.4			dBm	
each lane						
Receiver Saturation, each	overload	-3.4				
lane						
Sensitivity, each lane	Sen	Max ((-12.1, SECQ	-13.5)	dBm	
Stressed	Conditions	for Stress	Receiver Sen	sitivity		
Stressed Eye Closure for			3.4		dB	
PAM4 (SECQ), Lane under						
Test						
SECQ - 10*log10(Ceq),					dB	
Lane under Test						
OMAouter of each			-8		dBm	
Aggressor Lane						

Walsun Technology Co., Ltd

www.walsun.com

HXEX-ML331x V1.0




VIII. Digital Diagnostic Functions

The following digital diagnostic characteristics are defined over the normal operating conditions unless otherwise specified.

Parameter	Symbol	Min.	Max	Unit	Notes
Temperature monitor absolute error	DMI_Temp	-3	3	°C	Over operating temperature range
Supply voltage monitor absolute error	DMI_VCC	-3	3	%	Over full operating range
RX power monitor absolute error	DMI_RX	-3	3	dB	
Bias current monitor error	DMI_bias	-10	10	%	
TX power monitor absolute error	DMI_TX	-3	3	dB	

IX. Mechanical Dimensions

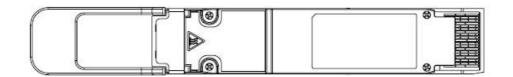


Figure4. Mechanical Outline

X. Revision History

Version No.	Initiated	Revised contents	Release Date
V1.0	James Wang	Preliminary datasheet	2023-03-16

XI. Contact us

Walsun Technology Co., Ltd

2-5# Tongfuyu Industrial Zone, Aiqun Road, Shiyan Street, Baoan District, Shenzhen, China

PC. 518108

T. +86 0755-23007456 F. +86 0755-23007451 H. www.walsun.com

E. sales@walsun.com