

10Gb/s SFP+ DWDM 40km Transceiver HXSD-ALxx41x

Features

- Up to 11.3Gb/s data links
- DWDM EML transmitter and PIN receiver
- 100 GHz ITU channel spacing with integrated wavelength locker
- Up to 40km on 9/125μm SMF
- Hot-pluggable SFP+ footprint
- Duplex LC/UPC type pluggable optical interface
- RoHS-10 compliant and lead-free
- Support Digital Monitoring interface
- Single +3.3V power supply
- Compliant with SFF+MSA and SFF-8472
- Metal enclosure, for lower EMI
- Meet ESD requirements, resist 8KV direct contact voltage
- Case operating temperature

Commercial: $0 \sim +70^{\circ}$ C Extended: $-10 \sim +80^{\circ}$ C Industrial: $-40 \sim +85^{\circ}$ C

Applications

- 10GBASE-ER/EW & 10G Ethernet
- SDH STM64
- Other Optical Links

Part Number Ordering Information

Part Number	Data Rate (Gb/s)	Wavelength (nm)	Transmission Distance(km)	Temperature (°C) (Operating Case)
HXSD-ALxx41C	10.3125	Refer to	40	0~70 commercial
HXSD-ALxx41E	10.3125	wavelength	40	-10~80 extended
HXSD-ALxx41I	10.3125	selection	40	-40~85 Industrial

Wavelength Selection: C-band λc Wavelength Guide Pin Descriptions

Channel	Wavelength	Frequency	Channel	Wavelength	Frequency
(xx)	(nm)	(THZ)	(xx)	(nm)	(THZ)
17	1563.86	191.70	39	1546.12	193.90
18	1563.05	191.80	40	1545.32	194.00
19	1562.23	191.90	41	1544.53	194.10
20	1561.42	192.00	42	1543.73	194.20
21	1560.61	192.10	43	1542.94	194.30
22	1559.79	192.20	44	1542.14	194.40
23	1558.98	192.30	45	1541.35	194.50
24	1558.17	192.40	46	1540.56	194.60
25	1557.36	192.50	47	1539.77	194.70
26	1556.55	192.60	48	1538.98	194.80
27	1555.75	192.70	49	1538.19	194.90
28	1554.94	192.80	50	1537.40	195.00
29	1554.13	192.90	51	1536.61	195.10
30	1553.33	193.00	52	1535.82	195.20
31	1552.52	193.10	53	1535.04	195.30
32	1551.72	193.20	54	1534.25	195.40
33	1550.92	193.30	55	1533.47	195.50
34	1550.12	193.40	56	1532.68	195.60
35	1549.32	193.50	57	1531.90	195.70
36	1548.51	193.60	58	1531.12	195.80
37	1547.72	193.70	59	1530.33	195.90
38	1546.92	193.80	60	1529.55	196.00
Non-ITU		ngth between m-1563.86	61	1528.77	196.10

I. Absolute Maximum Ratings

It has to be noted that the operation in excess of any individual absolute maximum ratings might cause permanent damage to this module.

Parameter	Symbol	Min	Max	Unit	Notes
Storage Temperature	T_{S}	-40	85	°C	
Power Supply Voltage	V_{CC}	-0.5	3.6	V	
Relative Humidity (non-condensation)	RH	5	95	%	
Damage Threshold	$\mathrm{TH_{d}}$	5		dBm	

II. Recommended Operating Conditions

Parameter	Symbol	Min	Typical	Max	Unit	Notes
		0		70		commercial
Operating Case	T_{OP}	-10		80	°C	extended
Temperature		-40		85		Industrial
Power Supply Voltage	V_{CC}	3.135	3.3	3.465	V	
Data Rate			10.3125		Gb/s	
Control Input Voltage High		2		Vcc	V	
Control Input Voltage Low		0		0.8	V	
Link Distance (SMF)	D			40	km	9/125um

III. General Description

Walsun'HXSD-ALxx41x SFP+ transceiver is designed for use in 10-Gigabit Ethernet links up to 40km over single mode fiber. The module consists of DWDM EML Laser, PIN and Preamplifier in a high-integrated optical sub-assembly. Digital diagnostics functions are available via a 2-wire serial interface, as specified in SFF-8472. This module is designed for single mode fiber and operates at a nominal wavelength of 100GHz ITU Grid, C Band DWDM wavelength.

HXSD-ALxx41x transceivers provide a unique enhanced digital diagnostic monitoring interface, which allows real-time access to device operating parameters such as transceiver temperature, laser bias current, transmitted optical power, and received optical power and transceiver supply voltage. It also defines a sophisticated system of alarm and warning flags, which alerts end-users when particular operating parameters are outside of a factory set normal range.

The SFP+ MSA defines a 256-byte memory map in EEPROM that is accessible over a 2-wire

serial interface at the 8 bit address 1010000X (A0h). The digital diagnostic monitoring interface makes use of the 8 bit address 1010001X (A2h), so the originally defined serial ID memory map remains unchanged.

IV. Pin Assignment and Pin Description

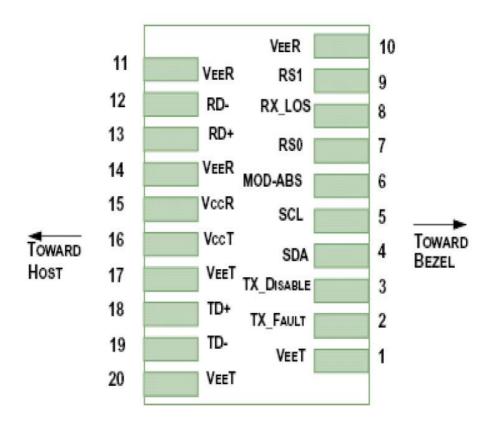


Figure 1. Diagram of host board connector block pin numbers and names

Pin	Symbol	Name/Description	Notes
1	V _{EET}	Transmitter Ground (Common with Receiver Ground)	1
2	T _{FAULT}	Transmitter Fault.	2
3	T _{DIS}	Transmitter Disable. Laser output disabled on high or open.	3
4	SDA	2-wire Serial Interface Data Line	4
5	SCL	2-wire Serial Interface Clock Line	4
6	MOD_ABS	Module Absent. Grounded within the module	4
7	RS0	Rate Select 0	5

		w	
8	LOS	Loss of Signal indication. Logic 0 indicates normal operation.	6
9	RS1	No connection required	
10	$ m V_{_{EER}}$	Receiver Ground (Common with Transmitter Ground)	1
11	V _{EER}	Receiver Ground (Common with Transmitter Ground)	1
12	RD-	Receiver Inverted DATA out. AC Coupled	
13	RD+	Receiver Non-inverted DATA out. AC Coupled	
14	$ m V_{_{EER}}$	Receiver Ground (Common with Transmitter Ground)	1
15	V _{CCR}	Receiver Power Supply	
16	V _{CCT}	Transmitter Power Supply	
17	V _{EET}	Transmitter Ground (Common with Receiver Ground)	1
18	TD+	Transmitter Non-Inverted DATA in. AC Coupled.	
19	TD-	Transmitter Inverted DATA in. AC Coupled.	
20	$ m V_{_{EET}}$	Transmitter Ground (Common with Receiver Ground)	1

Notes:

- 1. Circuit ground is internally isolated from chassis ground.
- 2. TFAULT is an open collector/drain output, which should be pulled up with a $4.7k\Omega$ - $10k\Omega$ resistor on the host board if intended for use. Pull up voltage should be between 2.0V to Vcc + 0.3V.A high output indicates a transmitter fault caused by either the TX bias current or the TX output power exceeding the preset alarm thresholds. A low output indicates normal operation. In the low state, the output is pulled to <0.8V.
- 3. Laser output disabled on TDIS >2.0V or open, enabled on TDIS <0.8V.
- 4. Should be pulled up with $4.7k\Omega$ - $10k\Omega$ on host board to a voltage between 2.0V and 3.6V. MOD ABS pulls line low to indicate module is plugged in.
- 5. Internally pulled down per SFF-8431 Rev 4.1.
- 6. LOS is open collector output. It should be pulled up with $4.7k\Omega-10k\Omega$ on host board to a voltage between 2.0V and 3.6V. Logic 0 indicates normal operation; logic 1 indicates loss of signal.

V. Electrical Characteristics

The following electrical characteristics are defined over the Recommended Operating Environment unless otherwise specified.

Parameter	Symbol	Min.	Тур.	Max	Unit	Notes
Power Consumption	р			1.8	W	
Supply Current	Icc			575	mA	
Transmitter						
Single-ended Input Voltage Tolerance	Vcc	-0.3		4	V	
AC Common Mode Input Voltage Tolerance (RMS)		15			mV	
Differential Input Voltage Swing	Vin,pp	120		820	mVpp	
Differential Input Impedance	Zin	90	100	110	Ohm	1
Transmit Disable Assert Time				10	us	
Transmit Disable Voltage	Vdis	Vcc-1.3		Vcc	V	
Transmit Enable Voltage	Ven	Vee		Vee +0.8	V	2
	Re	eceiver				
Differential Output Voltage Swing	Vout,pp	350		850	mVpp	
Differential Output Impedance	Zout	90	100	110	Ohm	3
Data output rise/fall time	Tr/Tf	28			ps	4
LOS Assert Voltage	VlosH	Vcc-1.3		Vcc	V	5
LOS De-assert Voltage	VlosL	Vee		Vee +0.8	V	5
Power Supply Rejection	PSR	100			mVpp	6

Notes:

- 1. Connected directly to TX data input pins. AC coupled thereafter.
- 2. Or open circuit.
- 3. Input 100 ohms differential termination.
- 4. These are unfiltered 20-80% values.
- 5. Loss of Signal is LVTTL. Logic 0 indicates normal operation; logic 1 indicates no signal detected.
- 6. Receiver sensitivity is compliant with power supply sinusoidal modulation of 20 Hz to 1.5 MHz up to specified value applied through the recommended power supply filtering network.

VI. Optical Characteristics

The following optical characteristics are defined over the Recommended Operating Environment unless otherwise specified.

Parameter	Symbol	Min.	Typical	Max	Unit	Notes
	Т	ransmitter				
Optical Wavelength	λο	λc -0.1		λc +0.1	nm	1
Center Wavelength Spacing			100		GHz	
Optical Spectral Width	Δλ			1	nm	
Side Mode Suppression Ratio	SMSR	30			dB	
Average Optical Power	P_{AVG}	0		4	dBm	2
Optical Extinction Ratio	ER	8.2			dB	
Transmitter and Dispersion Penalty	TDP			2	dB	
Transmitter OFF Output Power	POff			-30	dBm	
Transmitter Eye Mask		Con	npliant with	IEEE802.3a	ne	
		Receiver				
Center Wavelength	λ_{C}	1270		1610	nm	
Receiver Sensitivity (Average Power)	Sen.			-15.8	dBm	3
Input Saturation Power (overload)	Psat	0.5			dBm	
LOS Assert	LOSA	-30			dB	
LOS De-assert	LOSD			-19	dBm	
LOS Hysteresis	LOSH	0.5			dBm	

Notes:

- 1. λc refer to wavelength selection, and corresponds to approximately 0.8 nm.
- 2. Class 1 Laser Safety per FDA/CDRH and IEC-825-1 regulations.
- 3. Measured with Light source 1528.77~1563.86nm, ER=8.2dB; BER \leq 1E-12 @10.3125Gbps, PRBS= 2^{31} -1 NRZ.

VII. Digital Diagnostic Functions

The following digital diagnostic characteristics are defined over the Recommended Operating Environment unless otherwise specified. It is compliant to SFF-8472 Rev10.2 with internal calibration mode. For external calibration mode please contact our sales staff.

Parameter	Symbol	Min.	Max	Unit	Notes
Temperature monitor absolute error	DMI_ Temp	-3	3	°C	Over operating temp
Supply voltage monitor absolute error	DMI_VCC	-3	3	%	Full operating range
RX power monitor absolute error	DMI_RX	-3	3	dB	
Bias current monitor error	DMI_ bias	-10	10	%	
TX power monitor absolute error	DMI_TX	-3	3	dB	

VIII. Mechanical Dimensions

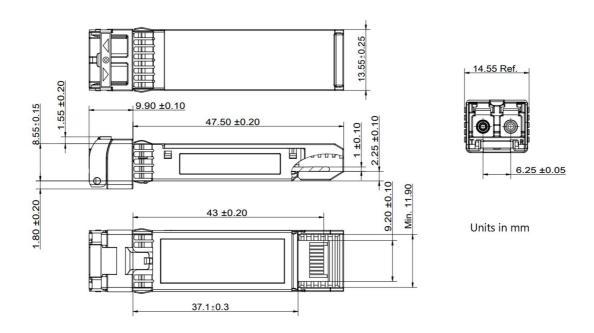


Figure 2. Mechanical Outline

IX. Revision History

Version No.	Initiated	Revised contents	Release Date
1.0	Andy Zhang	Preliminary datasheet	2014-06-11
1.1	Andy Zhang	Mechanical Change	2016-04-08

X. Contact us

Walsun Technology Co., Ltd

2-5# Tongfufu Industrial Zone, Aiqun Road, Shiyan Street, Baoan District, Shenzhen, China

T. +86 0755-23007456 F. +86 0755-23007451 PC. 518108

E. sales@walsun.com H. www.walsun.com